Effect of exercise on body temperature

Submitted by nalexandroum on Mon, 04/22/2019 - 23:23

Our hypothesis was that exercise will have no effect on body temperature. We recorded a mean resting temperature of 98.24 ºF, and mean temperatures of 97.99 ºF and 98 ºF for the first and second 1-minute sets of jumping jacks respectively. There was a 0.24 ºF drop in temperature after the first set and a 0.25 ºF drop after the second set, which shows that our hypothesis was not supported by the data. There was relatively low variation within the data, with a standard deviation of 0.93 for body temperature at rest, and standard deviations of 0.76 and 0.75 for each respective set of jumping jacks. This finding was supported by the data acquired by the rest of the class: across the data acquired by all four groups, the mean body temperature was 98.59 ºF at rest and 98.26 ºF after both sets of jumping jacks, with standard deviations of 0.86, 0.77, and 0.82 respectively. There was less variance in the forehead temperatures after each set of exercises than the forehead temperatures at rest.

Songs

Submitted by scasimir on Mon, 04/22/2019 - 23:21

The songs produced by each bird are diverse. Some songs can be soft or high, and others can have short or long notes. Frequency and amplitudes can be studied by creating a graph to visually study the sound of the birds. The higher the amplitude, the louder the song produced by the bird.  The difference between a song and a call is that songs have patterns, syllables, and phrases whereas call is short and simple. Calls are used for multiple situations for defense, conversation, also to attract mates. Most songs are similar to human songs. Each bird has its unique type of calls and vocalization to attract mates. The tempo and frequency are what attract neighbors and predators. Sound travels much further than distance, by using this physical property, birds can communicate with a larger range to other birds. Not only the vocalization produced by the bird itself but also the environment can affect how the bird is heard by other individuals. Some birds like Great Tits that live in the urban area adapted by a vocalization that will not be erased from the traffic noise caused by human activities and other loudness.

 

Draft: Muscle vs. liver cells

Submitted by aspark on Mon, 04/22/2019 - 21:53

Muscle cells use a variety of fuel sources: fatty acids at rest and glucose during exertion, at least initially. Muscle cells also vary widely in their energy demands and use glycogen stores only for themselves, not sharing with other cells. Glycogen breakdown overly exceeds glycogen synthesis by 300-fold, and they do not respond to glucagon. Muscle cells also do not perform gluconeogenesis, fatty acid synthesis, or ketogenesis. On the other hand, liver cells are very important for fatty acid homeostasis, performing triacylglycerol formation and fatty acid synthesis. They are also the primary site of ketone body synthesis and directly regulate blood glucose levels in response to hormones. Liver cells are also important storage sites for glycogen with equal rates of synthesis and breakdown of glycogen. Like muscle cells, liver cells use a variety of fuel sources that change depending on conditions.

Plant Physiology 2

Submitted by angelinamart on Mon, 04/22/2019 - 21:39

A plant called Arabidopsis thaliana was used to conduct three different experiments to explain how mesophyll conductance respond to the environment (Mizokami et al., 2017). One wildtype control called Col-0, two mutations, ost1 and slac1-2, were examined to eliminate factors that may influence the data not to represent an accurate display (Mizokami et al., 2017). Both of these mutants are insensitive to increase in the ABA and external CO2 levels because the stomata do not close properly. These mutations allowed Mizokami et al. to factor out the relationship between the stomatal conductance and the intercellular CO2 (2017). The data were collected and presented in multiple graphs and panels for different scenarios so that the readers could follow along the descriptions.

TAAs vs. Neoantigens

Submitted by sditelberg on Mon, 04/22/2019 - 21:18

Immunology is largely based on the recognition and discrimination of self and non-self. Many pathogens have molecular signatures that allow the immune system to recognize and target them for destruction (Janeway Jr. et al. 2002). Unlike most pathogens, tumor cells lack these identifiable molecular signatures, allowing them to evade recognition as “non-self” and subsequently the immune response. Instead, cancer cells display tumor antigens that can be recognized by the immune system. Two such categories of these tumor antigens include tumor-associated antigens (TAAs) and tumor-specific neoantigens, which arise through different mechanisms. TAAs are expressed at low levels in normal tissues but are overexpressed in cancer cells, whereas tumor-specific neoantigens arise via non-synonymous mutations in the tumor itself (Lu et al. 2016). In some cases, these mutations lead to the expression of mutated peptides.

Draft: Metabolic pathway regulation

Submitted by aspark on Mon, 04/22/2019 - 21:02

Metabolic pathways must be regulated to release energy when required, to store extra energy, and to synthesize molecules when needed. Specific reactions or enzymes in a mechanism serve as key regulatory steps, and usually they are those with largely negative changes in free energy. These are irreversible reactions that cannot be reversed through the manipulation of cellular conditions. If a chemical reaction in one direction is irreversible, then the opposing pathway must use a different chemical reaction and different regulatory enzyme. Different regulatory enzymes for opposing pathways allows for independent regulation based on cellular conditions, also known as fine-tuning. This is essential for regulating pathways. Regulatory enzymes are often as the beginning or end of a pathway, and the step that commits the pathway to a certain response is also highly regulated.

Lipids

Submitted by sharrath on Mon, 04/22/2019 - 20:29

Lipids are a class of organic compounds that are fatty acids. These lipids are used for energy storage, membrane structure and signaling between organ systems. Lipids are also significantly nonpolar and most are mainly composed of hydrogren and carbon and able to form van der Waals interactions. Triacylglycerols are three fatty acids attached to a glycerol and are formed by dehydration reactions between glycerol hydroxyl groups and fatty acid carboxyl groups. Triacylglycerol are often found in the liver and adipocytes and are main tissues involved in fat metabolism. Material from the digestive system directly enters the liver and biosynthesis of lipoproteins occurs which is then distributed to body cells for energy use. 

Mirror Neurons in Cingulate Cortex

Submitted by alanhu on Mon, 04/22/2019 - 19:42

Researches had found that there are neurons that mirror emotions and pain experienced by others in the anterior cingulate cortex. The cingulate cortex contains mirror neurons which allows us to feel pain while seeing someone else in pain. Researchers tested this by making rats watch other rats being put under an unpleasant stimulus. When the cingulate cortex was looked at, researchers found that the observing rates had activated the same neurons as the rats who are receiving the unpleasant stimulus. Rats tend to freeze when they are in fear and a way to avoid being detected by predators. When researchers injected a drug that inhibited the activity of the cingulate cortex, it was found that the rats no long froze when they saw other rats receiving an unpleasant stimulus.

 

Lab 4

Submitted by cnwokemodoih on Mon, 04/22/2019 - 18:59

To get a basic idea of the Bradi3g27407.2 gene expression pattern, we used the e-FP browser. This web-based tool gave us a graphical summary of our gene expression data. We analyzed the pictogram, chart and table outputs and noted the tissues and organs where our gene is expressed. We explored more about our gene expression pattern using the PlaNet gene expression clustering program. In addition, we retrieved gene expression data from Phytozome for different Brachypodium distachyon plant growth conditions. We made figures for select conditions.

Pages

Subscribe to Writing in Biology RSS