Nonpolar molecules tend to clump together when in aqueous environments. A nonpolar molecule tends to have a majority of nonpolar covalent bonds that occur between molecules of similiar electronegativity causing it to be hydrophobic. For example, carbon-carbon and carbon-hydrogen bonds are examples of bonds between two molecules that have a similar electronegativity. These molecules can generate some temporary, partical charges that allow the molecule to make very weak nonpolar interactions, which are called Van de Waal interactions. However, when in aqueous environments these molecules tend to clump together in order to increase the entropy of the water molecules. Greater entropy is favored in natural environments due to the fact that it requires less energy. When the nonpolar molecules clump together, this decreases the surface area of nonploar molecules that are surrounded by water. A cage of water molecule forms around the hydrophobic molecules preventing the nonpolar and polar molecules from interacting. If the nonpolar molecules were not clumped, there would be more organized water molecules involved in these individual cages. Molecules that are amphipatic contain both hydrophobic and hydrophilic molecules. In aqueous environments, the hydrophobic molecules will clump and the hydrophilic molecules will arrange themselves on the outside.
Recent comments