For project 3 so far, I have been working on understanding the basics of the immune system as well as expanding my knowledge of possible immunotherapy routes to take in curing pancreatic cancer. Through many review articles, I have found that there are two approaches to anti-cancer immunotherapy: passive and active. Passive immunotherapy involves treatments with monoclonal antibodies, adoptive T cell transfers, and genetically engineered T cells, whereas active immunotherapy involves vaccine-mediated immunity via the administration of tumor-associated antigens (Banerjee et al. 2018). I would like to focus my research on the active side of immunotherapy. Due to genetic alterations or post-translational modification of proteins, cancer cells can express and display proteins that differ from their normal cell counterparts or are overexpressed in the tumor phenotype (Battaglia et al. 2016). These proteins are known as tumor-associated antigens (TAA) and fail to be recognized by the immune system. As a result, cancer cells that display TAAs are able to evade the normal destructive response of active CD8+ T cells. Cancer vaccines serve as methods of active immunotherapy that can stimulate the CD8+ T cell response to these TAAs and hopefully eradicate all cancerous cells that display them (Banerjee et al. 2018).
Recent comments