You are here

Drafts

Methods Factor Control

Submitted by ekirchner on Thu, 09/19/2019 - 16:45

Today I chose my example of phytophagy on campus fo the methods project. Although there will be many factors when directing someone to the phytophagy, there are only a few I can control. For example, the weather was nice today and I went outside at 12 pm to view the plant I am using. I can control the time at which to look for my plant, but I cannot control the weather on any given day. I can also control the exact coordinates of my plant, as well as the angle from which a person views it. I was able to clearly see the phytophagy when standing facing the northeast direction, but standing in front of the plant facing south would not be effective. I can also control the amount of confusion by referencing items around my plant, like the campus pond or the ILC. There are only a few factors I am in control of, so I am hoping that my photos and map will help me out a bit more. 

Some interesting advices for science I picked up from a book

Submitted by imadjidov on Thu, 09/19/2019 - 14:43

The major source of knowledge include observation, experiment, and reasoning by induction and deduction. Exploring one’s own mind or soul to discover universal laws and solution to life’s greatest secrets.

The mediocre can be educated, but the geniuses educate themselves.

 

Science is a perpetual creative process.

 

There are no small problems. Problems that appear small are large problems that are not understood.

 

Nature is a harmonious mechanism where all parts, including those appearing to play a secondary role, cooperate in the functional whole. Nothing in nature is useless.

tiny brain COMPLEX BEHAVIOR

Submitted by imadjidov on Thu, 09/19/2019 - 14:36

It is logical to assume that a large brain size is needed to perform complex tasks. However, spiders seem to defy this trend by using tiny brains, small as the size of a pinhead, to produce sophisticated behaviors. Efficiency and compactness make the nervous system of spiders the perfect tool for studies in neurobiology. Their simple, yet efficient nervous system allows us to conduct and test hypotheses about the relationship between brain organization, connectivity, and behavior more easily than is possible in vertebrates. How is it possible that small sized animals such as spiders are able to show complex behaviors. My lab has recently found that we most of the behavior performed by the spider is due visual based. This finding has enabled us to perform physiological tests on the visual pathways on the brain of the spider.

Cure for the cold?

Submitted by damianszyk on Thu, 09/19/2019 - 13:12

Just the other day, I read an article on my phone about how researchers at Stanford and UCSF are one step closer to finding a cure for the common cold. They found that one protein is responsible for half of the common cold and other diseases. With this protein absent, researchers found that mice that were injected with a virus would be the ones who survived in comparison to the mice that did not have the formation of this protein blocked. These mice with the absent protein were unaffected by the virus. This certaintly gives us hope and is an important step in ultimately finding a cure for the common cold. The next step would be to develop a drug that would actually stop the synthesis of this specific protein.

My leaf (5/6)

Submitted by kheredia on Thu, 09/19/2019 - 11:01

The leaf I finally chose to represent a phytophagy example on campus had a better display more than any of the other leaves I examined. The leaf itself was from a tree nearby. I was purposefully looking for fallen leaves, because I predicted they would be easier for land insects to eat without having to expend as much energy as it would have been if the leaf was still attached to the tree. The leaf itself is a vibrantly deep green color which I had guessed had recently fallen because the texture of it was just beginning to become stiff. On the leaf there are various sizes of holes with the smallest being some millimeters long and the largest being approximately 2/10ths of a centimeter. Around these holes are minuscule bumps. The bumps have noticeable discoloration. They are a faded light green with hints of brown. This does not look like a typical display of leaf decay, so it is highly likely that those areas are where the insects ate parts of the leaf. I kept the sample with me and plan to keep it in my bag in case I need to refer back to it in the future. 

Methods, factors to consider (4/6)

Submitted by kheredia on Thu, 09/19/2019 - 10:35

In order to find evidence of phytophagy on campus, I needed to research photos and skim a few articles so that I had enough knowledge to be able to distinguish a regular leaf from an eaten one. When I gathered enough research, I took photos of leaves around campus and compared them to ones on the internet that displayed phytophagy. By carefully comparing and contrasting, I began to eliminate the photos of the leaves that were questionable rather than clear. It was difficult because some leaves at first sight resembled photos I saw online, but they were more likely just decaying. Though there could have been evidence on those leaves, I was more interested in finding a leaf that would unarguably display phytophagy without other factors to consider. Due to the cold change in weather, there is an increasing amount of leaves dying, so I had to be very careful when determining whether a leaf had clear evidence or not. When I did determine a leaf was eaten, I would compare it to another leaf of the same species and measure the differences between the two just to be sure that the leaf I chose was a good example. 

Introduction (3/6)

Submitted by kheredia on Thu, 09/19/2019 - 10:24

There is a wide variety of trees, plants, and shrubs on campus that display evidence of photophagy on campus. Choosing where to go can be complicated, because there are many factors to consider. For example, students are walking around in large numbers throughout the day, whether it is on sidewalks or cutting across the lawns to make it to class. There is less of a chance to find clear evidence in areas where it is congested, because students tread over leaves and bushes that can get rid of the evidence and there will also be less bugs during the day time when there are people constantly walking over and killing them. Not to mention that being in a heavily populated area can be distracting and impede in the search for phytophagy. This is why I sought out an area on campus where considerably less students walk by and where nature is left more often untouched. I plan to search the courtyard of grass and trees in between the rec center, the Dickinson hall building and the George N. Parks Minuteman Marching Band Building. With more room to move due of the lack of people and by visiting during class time, I will have enough time to efficiently seek out various leaves on trees and those that have fallen for the evidence. 

Plant diversity

Submitted by semans on Thu, 09/19/2019 - 08:07

The uniformity of most modern crops is due to three genetic bottlenecks that took place during centuries of plant domestication. The first occurred at the start of sedentary, agricultural life, and could best be described as the domestication bottleneck. Early farmers only used a limited number of individuals as the progenitor species for their crop, resulting in a landrace. Thus, all of the subsequent crop plants came from the few those farmers had picked out, narrowing genetic variation in that plant. The second occurred during the first migratory phases of human civilization. When people migrated to new lands they would bring with them only a select number of plants from the landraces, which would once again reduce the genetic variation in the resulting crops. Finally, the third occurred many centuries later with the advent of modern genetic technology. Through the use of gene editing technology it became possible to create homogeneity for entire crop fields. Plants could now be edited to include genes of choice such as herbicide resistance, pest resistance, disease resistance, and many other traits, some of which allowed for the complete mechanization of farming. The final bottleneck has resulted in single plant genotypes propagated across entire fields, random variations becoming a thing of the past.

Geriatric care in prison

Submitted by smomalley on Thu, 09/19/2019 - 01:22

The United States has the highest percentage of incarcerated people in the entire world. The prison population is mostly made up of non-violent short term sentences. Most prisoners are adult males behind bars for violent crimes. The majority of whom are held in state prisons. The average age of this specific prison population has risen as older prisoners carry out lengthy sentences. The older prison population has a host of health problems associated with age. Living in prison is hard on the body and accelerates the aging process. On average a prisoner above the age of sixty requires double the funding of a younger prisoner because of these health problems. This strains the already small state prison budgets. Statistically speaking, these prisoners are the least likely to return into society and committ another crime. A person typically "ages out" of crime in their late thirties. Violent offenders are also the least likely to committ another crime once released from prison, regardless of age. That begs the question, why are these people still locked behind bars? Prison health care does not have specialized geriatric care needed by these older prisoners. These older prisoners are the least likely to committ another crime, and cost double that of a younger prisoner. In countries like Denmark the maximum number of years served in prison is 25, regardless of the crime committed. After a certain point, there is no benefit to keeping ceratin populations in prison. Moving forward, geriatric care in prisons should be expanded upon, or release should be considered. 

The Warrior Gene

Submitted by smomalley on Thu, 09/19/2019 - 01:08

In the classic depate of nature versus nurture, a fairly recently discovered gene is added to evidence in the debate. The MAOA  gene, or the "Warrior Gene" is a gene linked to anger management issues and violent behavior when mutated. When the MAOA gene is shortened, it inhibits the body from clearing excess seratonin in the neural synapses of the brain. This excess seratonin causes a good mood to turn bad. This gene mutation has been corelated to anger management issues and violent behavior patterns. A team of scientists took genetic samples from a wide range of participants; ranging from buddhist monks to violent gang members. The genetic samples were tested for the Warrior Gene which is though to be natures cause for human violence. The results of the genetic tests showed that the three sampled buddhist monks had the gene, while other more violent participants did not. This result argues for nurture's cause of human violence.The results varied amoung groups tested, leading to the belief that both nature and nurture play a role in the personality of a human being. 

Pages

Subscribe to RSS - Drafts