Biome 2
From the temperature - precipitation data collected by the probe in location 2, I believe the biome to be a temperate shrubland. The average annual temperature is 14.4 °C (even though the line is plotted entirely between 16 °C - 18 °C) and the total annual precipitation is 51.8 cm. Throughout the course of 1 year, the temperature stays steady while the precipitation changes seasonally. The dry seasons are short, span the end-of-March to June and mid-April to the end-of-September, and cause droughts in both occasions. On earth, temperate shrublands, such as Gerona, Spain, tend to have a ~15 °C range of temperatures with one dry season during the summer months. Although there is no temperature variation and two dry seasons this biome still matches a temperate shrubland. One such example on earth is Gerona, Spain. The average yearly temperature is 16.7 °C and the average rainfall is 74.7cm. Only 2 °C and 20 cm away from the novel biome. Similar peaks of high rainfall on both the novel biome and Gerona, Spain are observed throughout the year. For these reasons, I believe this is a temperate shrubland.
Temperate shrublands have unique characteristics that set them apart from other biomes. The latitude on earth where they are found tends to be between 30 ° - 40 ° North and South of the equator, which is where I would expect this novel biome to be. At this latitude, Ferrell cells are most likely the air pattern present which drives tropical air masses toward the poles and polar air masses towards the equator. These assumptions are based on earth's biomes and climate and therefore may not perfectly describe a novel biome. Two dry seasons are not commonly found. It may be that for this planet revolving around its sun happens quicker and therefore seasonal change could happen more frequently in a years time. This could explain multiple dry seasons. As for plants found here, there are a few possibilities. Sclerophyllous shrubs are most likely present. They thrive in dry/wet climates due to their tough leathery leaves and ability to grow in dry soils. During droughts, they continue to photosynthesize at lower rates in order to preserve water. Evergreen trees may also be found in this biome. They also rely on wet/dry climates and can specifically grow in infertile soils produced by the drought. Their use of evergreen leaves reduces water loss, lowering the nutrient cost of living. Grasses could possibly grow in this region as well. Although they may require a greater amount of rain, water-retentive adaptations could allow them to inhabit this biome. Fires often take place every 30 - 40 years in the shrublands and many kinds of grass could survive this event because of their underground nutrient stores. Sclerophyllous shrubs and evergreens will most definitely be found in this region, with the possibility of grasses.
Recent comments