This scholarship supported the continuation of the undergraduate independent study work of Rachel Keeffe on the morphology and osteology of the electric knifefish *Compsaraia samueli*. The project involved taking meristic data and making osteological illustrations of a large sample of *C. samueli*, mostly collected during the reproductive season from the Negro River system in Brazil, to document the degree of sexual dimorphism in this species.

In the sample, it was found that mature males and mature females share a similar trend between snout length and body length up to a certain size. After this point, some males develop a longer snout relative to body length than females of the same size. Overall, females tend to be shorter with short snouts. It was also found that while the snout lengthens, the distance between the eye and the back of the opercle does not increase in the same proportion. Large males show strong positive allometry ($r^2 = 0.836$) and variability of facial dimensions, whereas females show similar positive isometry ($r^2 = 0.642$) to small males.

The most extreme osteological differences found between the male and the female skull occur within the suspensorium and lower jaw. In females, the lower jaw is more triangular and the dentary and angular-articular meet edge-to-edge. In males, the lower jaw is more linear and the dentary interlaces with the angular-articular. The coronomeckelian is small and round in females and longer and arrow-shaped in males. These differences are observed even in short-snouted males.

This award allowed me to present this work at the American Society of Ichthyologists and Herpetologists 2017 meeting at Austin, Texas. The poster and figures were made at the BCRC at UMass. The poster presentation was well received during the meeting, and allowed for constructive dialogue about the project and future directions. I intend to submit this work for publication in 2018.